If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+1)(x-1)/(x^2-1)=1/4
We move all terms to the left:
(x+1)(x-1)/(x^2-1)-(1/4)=0
Domain of the equation: (x^2-1)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
x^2!=1
x^2!=1/
x^2!=√1/
x!=1
x∈R
(x+1)(x-1)/(x^2-1)-(+1/4)=0
We use the square of the difference formula
x^2-1-(+1/4)=0
We get rid of parentheses
x^2-1-1/4=0
We multiply all the terms by the denominator
x^2*4-1-1*4=0
We add all the numbers together, and all the variables
x^2*4-5=0
Wy multiply elements
4x^2-5=0
a = 4; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·4·(-5)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*4}=\frac{0-4\sqrt{5}}{8} =-\frac{4\sqrt{5}}{8} =-\frac{\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*4}=\frac{0+4\sqrt{5}}{8} =\frac{4\sqrt{5}}{8} =\frac{\sqrt{5}}{2} $
| 24y+3=20y+15 | | c=86c+7 | | 8-5x=3x-88 | | 5y-20=3y-20 | | 4m-2/2=m+11/3 | | แทนค่าสมการ7x+7=5x-3 | | 1(5x+1)=18 | | 2(5x+1=18 | | 5x+18=13x | | 13x+15=6x+190 | | 5x/20=9x | | 13x+15=6x190 | | 5u+7=3u+11 | | 20-3x=23 | | 3(x-2)-6=5x-8 | | 5^3x-7=311 | | 11x-11x=-9 | | 11x-11x=9 | | 6x-16=9x+6 | | X*y/2=30 | | (8x-12)=(5x+15) | | x*4-1=4 | | 2x-13=-4x-14= | | 47+7x=16x+2 | | 14a-20=9a | | (-4x+4)/(2x-3)=0 | | 7+4x=90 | | 32-y=10-10y | | (25)^x+2=(5)^3x+4 | | (e+1)×2=8 | | 12x2-3=12x2+3 | | x÷-2+8=7 |